The Sharp Sobolev Inequality and the Banchoff-pohl Inequality on Surfaces

نویسنده

  • RALPH HOWARD
چکیده

Let (M,g) be a complete two dimensional simply connected Riemannian manifold with Gaussian curvature K ≤ −1. If f is a compactly supported function of bounded variation on M then f satisfies the Sobolev inequality 4π Z

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SHARP AFFINE Lp SOBOLEV INEQUALITIES

In this paper we prove a sharp affine Lp Sobolev inequality for functions on R. The new inequality is significantly stronger than (and directly implies) the classical sharp Lp Sobolev inequality of Aubin [A2] and Talenti [T], even though it uses only the vector space structure and standard Lebesgue measure on R. For the new inequality, no inner product, norm, or conformal structure is needed at...

متن کامل

Sharp Stability Theorems for the Anisotropic Sobolev and Log-sobolev Inequalities on Functions of Bounded Variation

Combining rearrangement techniques with Gromov’s proof (via optimal mass transportation) of the 1-Sobolev inequality, we prove a sharp quantitative version of the anisotropic Sobolev inequality on BV (R). As a corollary of this result, we also deduce a sharp stability estimate for the anisotropic 1-log-Sobolev inequality.

متن کامل

Logarithmic Sobolev Trace Inequality

A logarithmic Sobolev trace inequality is derived. Bounds on the best constant for this inequality from above and below are investigated using the sharp Sobolev inequality and the sharp logarithmic Sobolev inequality. Logarithmic Sobolev inequalities capture the spirit of classical Sobolev inequalities with the logarithm function replacing powers, and they can be considered as limiting cases of...

متن کامل

Sharp Hardy-littlewood-sobolev Inequality on the Upper Half Space

There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent λ = n−α (that is for the case of α > n). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequ...

متن کامل

Non-linear Ground State Representations and Sharp Hardy Inequalities

We determine the sharp constant in the Hardy inequality for fractional Sobolev spaces. To do so, we develop a non-linear and non-local version of the ground state representation, which even yields a remainder term. From the sharp Hardy inequality we deduce the sharp constant in a Sobolev embedding which is optimal in the Lorentz scale. In the appendix, we characterize the cases of equality in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998